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Constrained systems and statistical distribution
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Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1 EW, United Kingdom

~Received 3 May 1999; revised manuscript received 11 February 2000!

Theoretical advances in the statistical description of non-Hamiltonian systems@Tuckerman, Mundy, and
Martyna, Europhys. Lett.45, 149 ~1999!# have recently led us to rethink the definition of the phase-space
probability by using the proper invariant measure. Starting from this point of view, we will derive the statistical
distribution of constrained systems, considered as non-Hamiltonian, in Cartesian coordinates, in a way inde-
pendent from the standard Lagrangian treatment. Furthermore, we will analyze the statistical distribution of the
Nosé-Hoover isothermal~canonical or NVT! dynamics, considering with care the conservation laws hidden in
the evolution equations. Consequently, we will correct the equations of motion in order to obtain the proper
statistical ensemble. The isobaric-isothermal~constant pressure or NpT! form of the Nose´-Hoover dynamics is
then considered as a nontrivial extension of the described procedure and, similarly to the NVT case, we will
correct the equations of motion with respect to previous versions. The case of a constrained system coupled to
a thermostat and a piston is easily handled by means of the same formalism, whereas the Lagrangian treatment
becomes involved.

PACS number~s!: 05.20.Gg, 05.70.Ce
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I. INTRODUCTION

The statistical description of generic dynamical system
the main task of statistical mechanics. Recently, Tuckerm
et al. have analyzed the probability associated to n
Hamiltionian dynamics and have pointed out that a pro
treatment of the problem is possible only by defining t
invariant measure in phase space@1#. The authors have sug
gested viewing the phase-space in terms of a Rieman
manifold with a metric matrix whose determinant is det
mined by the evolution in time of the phase-space compr
ibility. The probability measure can then be written once
metric is known and all conservation laws exhibited by t
dynamics have been detected.

In the present paper, we will consider the case of syste
subjected to holonomic constraints viewed as generic n
Hamiltonian dynamics. For holonomic constraints, the eq
tions of motion are either known from standard Lagrang
mechanics, if the unconstrained system is Lagrangian
they can be written starting from Gauss’s principle of le
constraints in the more general case. The knowledge of
constrained probability is of importance for describing f
example the behavior of semiflexible molecular systems
computer experiments. By applying the formalism of Tuc
ermanet al. we will derive the associated distribution fun
tion in Cartesian coodinates in a way alternative to the s
dard Lagrangian procedure@2#.

Subsequently, we will apply the same theoretical analy
to study another interesting class of dynamics, the No´-
Hoover ~NH! thermostat and piston. The Nose´-Hoover
scheme is a family of equations of motion customarily e
ployed to achieve a phase-space trajectory sampling an
thermal@3,4# and/or isobaric ensemble@5,6#. By first consid-
ering the case of NH equations of motion without imposi
any additional constraint, it can be shown@7,8# that the con-
servation of a pseudomomentum in@3–5# leads to an incor-
rect distribution function for both the NVT and NpT en
semble. In order to correct these distributions, we need
PRE 611063-651X/2000/61~6!/6165~6!/$15.00
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modify the NH equations so that the system conserves
physical momentum and the center-of-mass position~for in-
ternal forces summing to zero!. The change corrects the pre
vious NVT and NpT equations of motion@3–5# although the
correction is numerically significant with respect to the p
vious version only for small systems with nonzero total m
mentum.

The more complex case of a constrained system cou
with the isobaric NH dynamics will be considered. This d
namical system leads to a heavy algebraic treatment if a
lyzed in terms of an underlying Lagrangian. Conversely,
applying the described procedure we will easily compute
probability measure, demostrating its simplicity.

The paper is organized as follows. In Sec. II the analyti
treatment of constrained systems in terms of no
Hamiltonian systems is presented. Section III deals with
isothermal NVT dynamics with and without holonomic co
straints. Section IV deals with the statistical distribution
the isobaric-isothermal ensemble with and without co
straints. Section V contains some concluding remarks.

II. NON-HAMILTONIAN DYNAMICAL SYSTEMS
AND HOLONOMIC CONSTRAINTS

Let us consider a generic non-Hamiltonian dynamical s
tem composed ofx5$xi% degrees of freedom and obeyin
the autonomous equations of motion

ẋi5j i~x!. ~1!

Tuckermanet al. @1# have recently shown that the invaria
measure to be associated with the phase space of a
Hamiltonian dynamics is not simply the Lebesgue measu
but it is the one obtained multiplying the volume element
Ag(x), whereg(x) is the determinant of the metric matrix o
a general Riemann manifold.g(x) is related to the Jacobia
of the transformation of the phase-space pointx0→xt,
6165 ©2000 The American Physical Society
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I ]xt

]x0I5Ag~x0!/Ag~xt!, ~2!

whereAg(x) satisfies the evolution equation@1#

d

dt
lnAg~x!52¹j52(

i

]j

]xi
~3!

showing that the metric is uniquely determined by the so
tion of the above differential equation, i.e., it is given
terms of the phase-space compressibility. The evolution
the metric is consistent with all conservation laws satisfi
by the evolution equations. Writing theL conserved quanti-
ties as

C~x!5$Ca~x!%a51,L50, ~4!

the ‘‘microcanonical’’ probability density will be given in
the end by)ad„Ca(x)….

Following @1#, we define the stationary distribution func
tion f (x) such that any ensemble average can be written

^A&5

E dxAg~x! f ~x!A~x!

E dxAg~x! f ~x!

, ~5!

whereAg(x) f (x)dx is the probability andf (x) is the prob-
ability density@9#.

Let us now consider a system described in Cartesian
ordinates and subjected to holonomic constraints. In the
lowing, we will use italic subscripts for atomic indexing,a
and b for constraints,g for molecular indices, andn51,3
for the spatial components of vectors. According to Ham
tonian dynamics of systems subjected to holonomic c
straints, the equations of motion can be written in the for

ṙ i5pi /mi ,

ṗi5Fi1(
a

la¹ isa , ~6!

where the$l% ’s are the Lagrange multipliers whose valu
are obtained requiring that theG constraints

sa~$r %!50,

ṡa~$r ,p%!5(
i

¹ isa•pi /mi50, a51,G ~7!

are satisfied at any time. The above two conditions fors and
ṡ hold separately since they depend on positions and
menta as independent variables.

The set of equations~6!, where the$l% ’s have been given
their valuel5l(r ,p), are not in Hamiltonian form but they
have a simple form for the analytical treatment. Thus
regard the constrained evolution as a generic n
Hamiltonian dynamical system carrying a nontrivial metr
In the following we will consider the case of constraints th
-
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do preserve total momentum, such as constraints depen
only on intramolecular distances.

The values of the Lagrange multipliers, which guaran
the constraints conservation, can be viewed as phase f
tions. In fact, by deriving twice in time the constraints, w
obtain

s̈a5(
i , j

¹ i j
2 sa

pi•pj

mimj
1(

i

¹ isa

mi
•S Fi1(

b
¹ isblb~r ,p! D

50 ~8!

so that

la~r ,p!52(
b

Zab
21S (

i , j
¹ i j

2 sb

pi•pj

mimj
1(

i

¹ isb•Fi

mi
D ,

~9!

where

Zab5(
i

¹ isa•¹ isb

mi
~10!

is a symmetric matrix. Consequently, once we have sub
tuted Eq.~9! in the equations of motion~6!, the conditions
s5ṡ50 no longer have to be added to the equations
motion but result as conservation laws produced by eq
tions of motion of a non-Hamiltonian system.

The metric of the overall system can now be derived
rectly by computing the phase-space compressibility,

dlnAg

dt
52(

i

] ṗi

]pi
52(

i ,a

]la

]pi
¹ isa

5 (
i , j ,a,b

2Zab
21¹ i j

2 sb

pi•¹ isa

mimj

5(
a,b

Zab
21Żab5Tr~Z21Ż!5

d

dt
lnuuZuu ~11!

„the last equality follows when considering the matr
U that diagonalizes Z, Z5U21Z̃U, and computing
the trace Tr(Z21Ż)5Tr@(U21Z̃21U)(2U21U̇U21Z̃U

1U21Ż̃U1U21Z̃U̇)#5(a(d ln Z̃aa /dt)5(d lnuuZuu/dt)….
Hence, the constrained probability is simply obtained

considering all the conservation laws (s5ṡ50,H5E) and
writing

f sAgdG5d~H2E!)
a

d~sa!d~ṡa!uuZuudG, ~12!

where we have used the fact that the constraints do not m
any work and therefore the energy is conserved. Thus
simply computing the phase-space compressibility, the m
ric of the constrained system and the total probability ha
been obtained, recovering the well known result of stand
Lagrangian mechanics@2#. Furthermore, by using the con
cept of a Riemannian manifold for phase-space, the g
metrical meaning of the invariant measure for a constrai
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system has been uncovered, giving an intuitive picture of
effect of constraints in phase-space.

III. ISOTHERMAL NOSE´ -HOOVER DYNAMICS

The Nose´-Hoover dynamics is a nonlinear coupling b
tween a Hamiltonian system and an additional degree
freedom introduced in order to thermalize the overall syst
@3,4#. This kind of thermalized dynamics is often used
order to attain a pseudocanonical sampling in compu
simulations of molecular dynamics. The usual form of t
NH equations of motion is

ṙ i5pi /mi ,

ṗi5Fi2zpi ,
~13!

ż5
2

tT
23NkTo

~K23NkTo/2!,

ṡ53Nsz,

whereK5(pi
2/2mi ,tT is a coupling time andTo is the ther-

malization temperature, the latter being two free paramet
The NH equations have an irrelevant variable,s ~Nosévari-
able!, which is statistically independent from the set$r ,p%,z.
On the other hand the Nose´ variable is useful to detect th
conserved quantities, which are

Hc5H1tT
23NkToz2/21kTo ln s5const,

~14!
s1/3NPo5const,

whereH is the system Hamiltonian function andPo5(pi is
the system total momentum. The quantitys1/3NPo is con-
served only if the sum of the system forces is strictly ze
Here those conserved quantities that are violated in prac
cases, such as the angular momentum when using per
boundary conditions, will not be considered.

The conservation laws show that the NH equations do
preserve total momentum, but only its product with the No´
variable to the power 1/3N. Therefore, the distribution asso
ciated with Eqs.~13! is not, strictly speaking, canonical, a
already pointed out by Choet al. @7# and Martyna@8#, who
have showed both numerically and analytically the effect
the bias produced by the conservation ofs1/3NPo on the dis-
tribution for the Nose´ equations of motion.

A modified version of the NH dynamics that conserv
total momentum is

ṙ i5pi /mi ,

ṗi5Fi2z~pi2mi Po /Mo!,
~15!

ż5
2

tT
23NkTo

S K2
Po

2

2Mo
2

3~N21!kTo

2 D ,

ṡ5~3N23!sz,

whereMo5(mi is the total mass.
e
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The equations conserve total momentum by construc
~for zero total forces! and the conserved quantities are

H1tT
23NkToz2/21kTo ln s5const,

Po5const. ~16!

The system metric is flat in the$r ,p%,z,s variable set as it is
for the original NH equations~although a metric factor is
present if considering the$r ,p%,z set only! and the canonica
distribution is obtained by integrating out the Nose´ variable:

f NH~r ,p,z!5E dsd~Hc2const!)
n

d~Pon2const!

5E dsd~H1tT
23NkToz2/21kTo ln s

2const!)
n

d~Pon2const!

}exp@2bo~H1tT
23NkToz2/2!#

3)
n

d~Pon2const!. ~17!

We can calculate the effect of coupling the Nose´ variable to
the absolute rather than to the relative momenta if the sys
is prepared at initial time withPo(t50)50 so that, given the
evolution equationṖo52zPo , the conditionPo(t)50 will
always hold. In this case the numerical trajectories with a
without the correction differ by a factor 3kTo/2 in the kinetic
balance in the evolution equation forż. Therefore, since the
stationarity of the distribution in the two cases imposes t

^ż&50, we have ^K&53NkTo /2 for the original Nose´-
Hoover dynamics and̂K&53(N21)kTo/2 for the corrected
one, the latter condition being compatible with the conser
tion of total momentum. The same result can be obtained
computing the probability directly for the original NH
dynamics and by considering all the conservation laws,
result being f }exp@2bo(N21)/N(H1tT

23NkToz
2/2)#d(Po).

The difference in the trajectories is a shift in the avera
kinetic temperature, a bias that becomes negligible for la
enough systems.

Let us now consider the Nose´-Hoover dynamics coupled
to a constrained system. In this case the equations of mo
are

ṙ i5pi /mi ,

ṗi5Fi1(
a

l̃a¹ isa2z~pi2mi Po /Mo!,

~18!

ż5
2

tT
2~3N2G!kTo

S K2
Po

2

2Mo
2

~3N2G23!kTo

2 D ,

ṡ5~3N232G!sz.

From the equations of motion it can be verified that the N
conserved quantityHc5H1tT

2(3N2G)kToz2/21kTo ln s
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is not violated by the constraints since( i¹ isapi /mi50, i.e.,
the conservation laws~16! are still both valid.

From the second time derivative of the constraints it f
lows that the Lagrange multipliers now depend on positio
momenta, and the thermostatting variable altogether,

s̈a5(
i , j

¹ i j
2 sa

pi•pj

mimj
2z(

i

¹ isa•pi

mi

1(
i

¹ isa

mi
•S Fi1(

b
¹ isbl̃b~r ,p,z! D 50, ~19!

where we have used the fact that for any vectorv indepen-
dent of the atomic indexes, the dependence of the constr
on the intramolecular distances only implies( i¹ isa•v50.
Therefore,

l̃a~r ,p,z!5la~r ,p!1z(
b

Zab
21(

i

¹ isb•pi

mi
, ~20!

wherela andZab are defined as in Eqs.~9! and~10!. At this
stage, theṡa50 conditions are not yet imposed, i.e., th
second term on the right-hand side of Eq.~20! is not set to
zero, since this last term contributes to the compressibi
Proceeding analogously to the treatment for microcanon
constrained systems, the metric is

d lnAg

dt
5Tr~Z21Ż!2z(

ab
Zab

21Zab1z(
n

(
i

~12mi /Mo!

2~3N232G!z5
d lnuuZuu

dt
~21!

and finally by again integrating out the Nose´ variable we
obtain

f s
NH~r ,p,z!AgdGdz}exp$2bo@H1tT

2~3N2G!kToz2/2#%

3uuZuu)
n

d~Pon2const!

3)
a

d~sa!d~ṡa!dGdz, ~22!

where we used the fact that the constraints conserve
Nosé-Hoover conserved quantityHc.

IV. ISOTHERMAL-ISOBARIC NOSE´ -HOOVER
DYNAMICS

The analysis of the distribution function in terms of th
phase-space metric is useful for studying complex equat
of motions, such as the ones for the isothermal-isob
~NpT! case, where the algebraic treatment becomes invol

The NpT dynamics has first been introduced by Ander
@10# and Nose´ @3# and later written in the compact Nose´-
Hoover form@5#. By first considering the case of an unco
strained system, we write the equations of motions of a s
tem subjected to an external pressureAo as

ṙ i5pi /mi1h~r i2Ro!,
-
s,

nts

.
al

he

ns
ic
d.
n

s-

ṗi5Fi2~z1h!~pi2mi Po /Mo!,

ż5
2

tT
23NkTo

S K2
Po

2

2Mo
2

3~N21!kTo

2 D ,

ṡ5~3N23!sz,

ḣ5
V

tP
2NkTo

S 2K1W2Po
2/Mo

3V
2AoD ,

V̇53Vh, ~23!

wheretP is the piston coupling time,K is the kinetic energy,
andW is the atomic virial, and where we have corrected bo
the thermostat and the piston couplings with respect to
previous version in order to conserve total momentum. T
conserved quantities are thus

Hc5H1tT
23NkToz2/21kTo ln s1tP

23NkToh2/21AoV

5const,

Po5const, ~24!

where again we only consider the case when total forces
to zero. By computing the phase-space compressibility,
obtain

d ln Ag

dt
523h52

d ln V

dt
~25!

and thereforeAg}V21. Setting the total momentum to zero
we include the constraint on the center-of-mass positionRo

5const, sinceṘo5Po /Mo , so that the total probability is

f NH~r ,p,z,h,V!AgdGdzdhdV

}E dsd~Hc2const!)
n

d~Pon!d~Ron2const!

3V21dGdzdhdV

}exp[2bo~H1tT
23NkToz2/21tP

23NkToh2/2

1AoV)])
n

d~Pon!d~Ron2const!V21dGdzdhdV.

~26!

The apparently oddV21 term is indeed needed due to th
conservation of the center-of-mass position. In fact, for
case of a perfect gas in the NpT ensemble and with c
served center-of-mass position, the partition function is p
portional to

E dV exp~2boAoV!E dNr)
n

d~Ron2const!

}E dV exp~2boAoV!VN21. ~27!
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Therefore, our distribution function correctly contains bo
theV21 and the conservation of the center-of-mass positi
The same argument applies for the nonideal case and
translational invariance of the potential, by writing the co
figurational integral in terms of scaled positions.

The equations of motion~23! differ from the previous
NpT ones@5# by the coupling of the thermostat and piston
the relative rather than the absolute momenta. We rew
here the latter for reference,

ṙ i5pi /mi1h~r i2Ro!,

ṗi5Fi2~z1h!pi ,

ż5
2

tT
23NkTo

~K23NkTo/2!,

~28!
ṡ53Nsz,

ḣ5
V

tP
2NkTo

S 2KM1WM

3V
2AoD ,

V̇53Vh.

The effect of the coupling~28! is not dangerous for large
systems. In fact, the metric corresponding to Eqs.~28! is
Ag51, whereas the conserved quantities are the same
tended enthalpy and the quantitys1/3NV1/3Po . The latter con-
served quantity, which was not considered in previous tre
ments, introduces again aV21 term in the distribution
function. On the other hand, differently from Eqs.~23!, the
center-of-mass position is not conserved any more and th
fore the resulting distribution function is incorrect.

As for the NVT case, the difference between the origin
and corrected equations of motion in this NpT case can
calculated once we setPo50 at initial time, thus ensuring its
conservation at all times for the uncorrected equations
motion, sinceṖo52(z1h)Po . Again the stationarity of the
distribution imposeŝ ż&5^ḣ&50 and for the original equa
tions ^K&53NkTo/2, whereas for the corrected form̂K&
53(N21)kTo/2. Therefore, the effect of coupling the the
mostat and piston variables to the relative rather than
absolute momenta is negligible for large systems, since
original NpT equations sample the isobaric-isothermal
semble with a temperature shifted by a factorN/(N21) with
respect to the preset valueTo .

When considering the case of a constrained system in
NpT ensemble, we can couple the piston to the system in
different ways. Here we consider the simplest approach
consists in taking a set of molecules and couple the pisto
the center-of-mass position of each molecule. In this case
equations of motion are written as

ṙ g i5pg i /mg i1h~Rg2Ro!,

ṗg i5Fg i1(
a

l̃a¹a isa2z~pg i2mi Po /Mo!

2hmg i~Pg /Mg2Po /Mo!,
.
or
-

te

x-

t-
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f

e
e
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ż5
2

tT
2~3N2G!kTo

S K2
Po

2

2Mo
2

3~N21!kTo

2 D ,

ṡ5~3N232G!sz,

ḣ5
V

tP
2NkTo

S 2KM1WM2Po
2/Mo

3V
2AoD ,

V̇53Vh, ~29!

where Rg ,Pg ,Mg are the molecular center-of-mass po
tions, momenta, and masses, respectively.KM ,WM are the
molecular kinetic and virial contributions to pressure defin
in @5#. The associated conserved quantities are

H1tT
2~3N2G!kToz2/21kTo ln s1tP

23NkToh2/21AoV

5const,

Po5const50,
~30!

Ro5const,

and again the piston does not act against the intramolec
constraints (ṡ5(¹s ṙ 5(¹sp/m50). By repeating the
same algebraic argument as for the NVT case, it is found
the Lagrange multipliers are still expressed by Eq.~20!, due
to the translational invariance of the constraints so that
piston dependent terms sum to zero in the corrisponden
Eq. ~19! for the molecular NPT case. Therefore, the co
strained isobaric-isothermal probability is

f s
NH~r ,p,z,h,V!AgdGdzdhdV

}exp$2bo@H1tT
2~3N2G!kToz2/2

1tP
23NkToh2/21AoV#%)

n
d~Pon!d~Ron2const!

3)
a

d~sa!d~ṡa!V21uuZuudGdzdhdV, ~31!

which is the expected NpT distribution function for a co
strained system where the center of-mass position and
mentum are conserved.

V. CONCLUDING REMARKS

The statistical distribution of constrained systems h
been derived by considering the constrained dynamics
non-Hamiltonian dynamical system. By using the gener
ized form of the Liouville equation and the phase-space co
pressibility, we have bypassed the Lagrangian treatment
computed directly the measure and, in turn, the probab
density as a product ofd functions for each conserved qua
tity.

The method has proven to be advantageous when ana
ing complex dynamical systems, such as the ones descr
for the isothermal-isobaric Nose´-Hoover dynamics coupled
to constraints. For these cases, by detecting the conserv
laws hidden in the NVT and NpT dynamics and by comp
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ing the associated metric, we have corrected the prev
equations of motion for systems with total forces summing
zero in order to obtain the proper statistical distribution. T
change consists in coupling the NH thermostat and pisto
the relative rather than the absolute momenta and we h
shown that the effect of the modification on numerical t
jectories manifests itself only for small systems.

We conclude by remarking that we have detected the c
served quantities in the Nose´-Hoover dynamics by direct in
spection. Other hidden conserved quantities may still
present. This could explain why the distribution comput
for a single harmonic oscillator coupled to a NH thermos
is canonical, differing from the one derived numerically@11#.
ys

in
us
o
e
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ve
-

n-

e
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t

On the other hand, experience has shown that a therma
system composed of many degrees of freedom exhibi
truly canonical distribution, therefore suggesting that t
possible bias induced by other hidden conserved quantitie
not important for large enough systems.
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