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Theoretical advances in the statistical description of non-Hamiltonian sy¢fBmeckerman, Mundy, and
Martyna, Europhys. Lett45, 149 (1999] have recently led us to rethink the definition of the phase-space
probability by using the proper invariant measure. Starting from this point of view, we will derive the statistical
distribution of constrained systems, considered as non-Hamiltonian, in Cartesian coordinates, in a way inde-
pendent from the standard Lagrangian treatment. Furthermore, we will analyze the statistical distribution of the
NoseHoover isothermalcanonical or NVT dynamics, considering with care the conservation laws hidden in
the evolution equations. Consequently, we will correct the equations of motion in order to obtain the proper
statistical ensemble. The isobaric-isotherifrainstant pressure or NpTorm of the NoseHoover dynamics is
then considered as a nontrivial extension of the described procedure and, similarly to the NVT case, we will
correct the equations of motion with respect to previous versions. The case of a constrained system coupled to
a thermostat and a piston is easily handled by means of the same formalism, whereas the Lagrangian treatment
becomes involved.

PACS numbdis): 05.20.Gg, 05.70.Ce

[. INTRODUCTION modify the NH equations so that the system conserves the
physical momentum and the center-of-mass positfonin-

The statistical description of generic dynamical systems i¢ernal forces summing to zexcdThe change corrects the pre-
the main task of statistical mechanics. Recently, Tuckermanious NVT and NpT equations of motid8-5] although the
et al. have analyzed the probability associated to non.COffECtiOﬂ is numerically significant with respect to the pre-
Hamiltionian dynamics and have pointed out that a prope¥ious version only for small systems with nonzero total mo-
treatment of the problem is possible only by defining thementum.
invariant measure in phase spdté The authors have sug- ~ The more complex case of a constrained system coupled
gested viewing the phase-space in terms of a Riemanniaffith the isobaric NH dynamics will be considered. This dy-
manifold with a metric matrix whose determinant is deter-namical system leads to a heavy algebraic treatment if ana-
mined by the evolution in time of the phase-space compresdyZed in terms of an underlying Lagrangian. Conversely, by
ibility. The probability measure can then be written once theaPplying the described procedure we will easily compute the
metric is known and all conservation laws exhibited by theProbability measure, demostrating its simplicity.
dynamics have been detected. The paper is organized as follows. In Sec. Il the analytical

In the present paper, we will consider the case of systemieatment of constrained systems in terms of non-
subjected to holonomic constraints viewed as generic nonHamiltonian systems is presented. Section Il deals with the
Hamiltonian dynamics. For holonomic constraints, the equalsothermal NVT dynamics with and without holonomic con-
tions of motion are either known from standard Lagrangiarﬁtrai”ts- Section IV deals with the statistical distribution in
mechanics, if the unconstrained system is Lagrangian, dhe isobaric-isothermal ensemble with and without con-
they can be written starting from Gauss'’s principle of leastStraints. Section V contains some concluding remarks.
constraints in the more general case. The knowledge of the
constrained probab?lity is of impo_rtance for describing fo_r II. NON-HAMILTONIAN DYNAMICAL SYSTEMS
example the behawor of semlerIX|bIe molecular systems in AND HOLONOMIC CONSTRAINTS
computer experiments. By applying the formalism of Tuck-
ermanet al. we will derive the associated distribution func-  Let us consider a generic non-Hamiltonian dynamical sys-
tion in Cartesian coodinates in a way alternative to the stantem composed ok={x'} degrees of freedom and obeying
dard Lagrangian procedufa]. the autonomous equations of motion

Subsequently, we will apply the same theoretical analysis
to study another interesting class of dynamics, the Nose
Hoover (NH) thermostat and piston. The Neb®over
scheme is a family of equations of motion customarily em-
ployed to achieve a phase-space trajectory sampling an isduckermanet al. [1] have recently shown that the invariant
thermal[3,4] and/or isobaric ensemb|&,6]. By first consid- measure to be associated with the phase space of a non-
ering the case of NH equations of motion without imposingHamiltonian dynamics is not simply the Lebesgue measure,
any additional constraint, it can be shoyuhg] that the con-  but it is the one obtained multiplying the volume element by
servation of a pseudomomentum([@+-5] leads to an incor- Vg(x), whereg(x) is the determinant of the metric matrix of
rect distribution function for both the NVT and NpT en- a general Riemann manifold(x) is related to the Jacobian
semble. In order to correct these distributions, we need tof the transformation of the phase-space pafht:x!,

X'=g(x). (6A)
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do preserve total momentum, such as constraints depending

axt
‘—O =Ja(x%)/\g(xH), (2)  only on intramolecular distances.

X The values of the Lagrange multipliers, which guarantee
o ) ) the constraints conservation, can be viewed as phase func-

where Jg(x) satisfies the evolution equatiff] tions. In fact, by deriving twice in time the constraints, we
obtain
—In\/g(x —Vé=— E — ©)
p;- p] i0q
:El: ijo : Fi+% Vioﬂ)\ﬁ(rvp)

“mm; T m
showing that the metric is uniquely determined by the solu- !

tion of the above differential equation, i.e., it is given in =0 ®
terms of the phase-space compressibility. The evolution for

the metric is consistent with all conservation laws satisfiec© that

by the evolution equations. Writing tHe conserved quanti-

ties as Pi-Pj ViogFi
)\a(rip) z Zaﬁ(E Vljo-ﬁmmj EI mi 3
CX)={Cu(¥)}a=1L=0, 4 9
the “microcanonical” probability density will be given in  where
the end byll,,5(C,(x)).
Following [1], we define the stationary distribution func- B Vio, Viog
tion f(x) such that any ensemble average can be written as Zaﬁ_Z m, (10
f dxyg(x) f(x)A(X) is a symmetric matrix. Consequently, once we have substi-
(Ay= 5) tuted Eq.(9) in the equations of motioK6), the conditions
[y ' o=0=0 no longer have to be added to the equations of
f dxvgOOf(x) motion but result as conservation laws produced by equa-
. 3 . tions of motion of a non-Hamiltonian system.
where yg(x) f(x)dx is the probability and (x) is the prob- The metric of the overall system can now be derived di-
ability density[9]. rectly by computing the phase-space compressibility,
Let us now consider a system described in Cartesian co-
ordinates and subjected to holonomic constraints. In the fol- dln\/_
lowing, we will use italic subscripts for atomic indexing, = —E 0 2 3 Vio
and B for constraints,y for molecular indices, and=1,3 p, he p'
for the spatial components of vectors. According to Hamil- pi-Vio
tonian dynamics of systems subjected to holonomic con- = 2 zz;ﬁ.lvﬁaﬁ—
straints, the equations of motion can be written in the form LB mim;
. . d
— _ -15  _ 15\ _
r=pi/m;, =2 Z,52=THZ72)= ginllzl| @y
pi= Fi+2 A\ Vio,, (6) (the last equality follows when considering the matrix

U that diagonalizesz, Z=U"'ZU, and computing
where the{\}’s are the Lagrange multipliers whose valuesthe  trace T~ '2)=T{(U'Z"*U)(-~U"'uu'Zu

are obtained requiring that ti@ constraints +U~ZU+U"1Z0)]=3 (d InZ,, /dt)=(dIn||Z||/dt)).
Hence, the constrained probability is simply obtained by
oa({r}) =0, considering all the conservation laws € o=0H=E) and
writing

o (r,pH =2 Vio, pi/m=0, a=1G (7
' foNgdl'=8(H-E)[] 8(a,)6(0,)||Z]|dT, (12

are satisfied at any time. The above two conditionssf@nd

o hold separately since they depend on positions and maxhere we have used the fact that the constraints do not make
menta as independent variables. any work and therefore the energy is conserved. Thus by
The set of equation®), where the{\}'s have been given simply computing the phase-space compressibility, the met-
their valuex =\ (r,p), are not in Hamiltonian form but they ric of the constrained system and the total probability have
have a simple form for the analytical treatment. Thus webeen obtained, recovering the well known result of standard
regard the constrained evolution as a generic nonkagrangian mechanid®]. Furthermore, by using the con-
Hamiltonian dynamical system carrying a nontrivial metric.cept of a Riemannian manifold for phase-space, the geo-
In the following we will consider the case of constraints thatmetrical meaning of the invariant measure for a constrained
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system has been uncovered, giving an intuitive picture of the The equations conserve total momentum by construction

effect of constraints in phase-space. (for zero total forcesand the conserved quantities are
. 2 2 —
IIl. ISOTHERMAL NOSE -HOOVER DYNAMICS H+ 773NkTo{%/2+ KT, In s=const,
The NoseHoover dynamics is a nonlinear coupling be- P,=const. (16)

tween a Hamiltonian system and an additional degree of

freedom introduced in order to thermalize the overall systenThe system metric is flat in thig,p},{,s variable set as it is
[3,4]. This kind of thermalized dynamics is often used infor the original NH equationgalthough a metric factor is
order to attain a pseudocanonical sampling in computepresent if considering thig,p},¢ set only and the canonical
simulations of molecular dynamics. The usual form of thedistribution is obtained by integrating out the Nos&iable:
NH equations of motion is

F=p i, fNH(r,p,g):f ds&(Hc—consﬂ:[ S(P,,—consi
Pi=Fi={pi, =f dsS(H+ 723NKT,¢2/2+ kT, In's
(13
- 7$3NkTO(K_3NkT°IZ)’ —consy[I 5(P,,~cons
s=3Ns, =ex — Bo(H + 773Nk To(?/2)]
whereK =3 p?/2m; , 71 is a coupling time and, is the ther- xI1 s(P,,—consi. (17)
malization temperature, the latter being two free parameters. v

The NH equations have an irrelevant variatséNosevari-

able, which is statistically independent from the $efp},¢.  We can calculate the effect of coupling the Nmiable to
On the other hand the Nosariable is useful to detect the the absolute rather than to the relative momenta if the system

conserved quantities, which are is prepared at initial time witF,(t=0)=0 so that, given the
) evolution equatiorP,= —¢P,, the conditionP,(t)=0 will
H®=H + 773NkT,{?/2+ kT, In s=const, always hold. In this case the numerical trajectories with and

(14)  without the correction differ by a factork3¥,/2 in the kinetic
balance in the evolution equation fér Therefore, since the
whereH is the system Hamiltonian function aj=Sp; is stationarity of the distribution in the two cases imposes that

the system total momentum. The quantf®P, is con-  ({)=0, we have(K)=3NkT,/2 for the original Nose
served only if the sum of the system forces is strictly zero Hoover dynamics angK)=3(N—1)kT,/2 for the corrected
Here those conserved quantities that are violated in practicgn®: the latter condition being compatible with the conserva-
cases, such as the angular momentum when using periodi@" Of total momentum. The same result can be obtained by
boundary conditions, will not be considered. computing the probablllty_ directly for the or_|g|nal NH
The conservation laws show that the NH equations do noflynamics and by considering all the conservation laws, the
preserve total momentum, but only its product with the Nosd€Sult_being fexif —Bo(N—1)/N(H+#3NkT,%/2)]6(Po).
variable to the power 118. Therefore, the distribution asso- 'he difference in the trajectories is a shift in the average
ciated with Eqgs(13) is not, strictly speaking, canonical, as kinetic temperature, a bias that becomes negligible for large
already pointed out by Chet al.[7] and Martyna[8], who enough systems. . ] .
have showed both numerically and analytically the effect of L€t us now consider the Nod¢oover dynamics coupled
the bias produced by the conservatiors8f'P, on the dis- to a constrained system. In this case the equations of motion

sYNp_=const,

tribution for the NoSeequations of motion. are
A modified version of the NH dynamics that conserves )
total momentum is ri=pi/m,
f=plm, Pi=Fi+ 2 NoVioa—L(pi—mPo/M,),
pi=Fi—(pi—miPy/Mo), (18)
(15) ; 2 < P2 (3N-G-3)kT,
2 = - - 1
7= 2 K Pg B 3(N-1)kT, T$(3N_G)kTo 2M, 2
723NKT, 2M, 2 ’
. s=(3N—-3-G)s!.
s=(3N—-3)s¢,

From the equations of motion it can be verified that the NH
whereM,=X2m; is the total mass. conserved quantityH®=H + 72(3N— G)kTo¢%/2+kT,Ins



6168 SIMONE MELCHIONNA PRE 61

is not wolated.by the constraints smEeViaqpi /m;=0,i.e., pi=Fi—(+7)(pi—mPy/M,),
the conservation law&l6) are still both valid.
From the second time derivative of the constraints it fol-

2

lows that the Lagrange multipliers now depend on positions, 7= 2 (K— P _ 3(N— 1)kT°>

momenta, and the thermostatting variable altogether, 723NkT, 2M, 2 '
Vio, pI

s=(3N—3)s{,

b0= 3 Vicammt (3

o ~ : V[ 2K+W-PZM, )
- m; . Ffl‘% V|(Tﬁ}\ﬁ(r,p,§) :O, (19) n= 7'|23NkT0 3V 0]»
where we have used the fact that for any veetandepen- V=3Vy (23)

dent of the atomic indexes, the dependence of the constraints

on the intramolecular distances only impligsVio,-v=0.  \herer, is the piston coupling time is the kinetic energy,
Therefore, andW s the atomic virial, and where we have corrected both
o the thermostat and the piston couplings with respect to the
_ B ; S
X (0D, 0) =N (1.D) +§2 z: 12 Vi ~ZB T (200  Previous version in order to conserve total momentum. The
conserved quantities are thus

where\ , andZ,,; are defined as in Eqé9) and(10). At this HC=H+ 723NkTo?/2+ kT, In s+ 723Nk T, 7%/2+ AV
stage, theira=0 conditions are not yet imposed, i.e., the
second term on the right-hand side of Eg0) is not set to
zero, since this last term contributes to the compressibility.
Proceeding analogously to the treatment for microcanonical Po=const, (24)
constrained systems, the metric is

=const,

where again we only consider the case when total forces sum

din to zero. By computing the phase-space compressibility, we
f—Tr(Z 17)~ 52 ZojZapt {2 2 (1-mi/Mo)  obtain
din||z|| dinyg _  dhv
~(8N-8-G){=— (21 at 7T Tat @9

and finally by again integrating out the Nosariable we and therefore/g=V 1. Setting the total momentum to zero,
obtain we include the constraint on the center-of-mass posiign
fﬁ“(r,p,g) \/adngocexp{—ﬁo[H N 712-(3N—G)kT0§2/2]} =const, sinceR,=P,/M,, so that the total probability is
fNH(r,p, ¢, 7,V) Jgdl'dzd pdV
x||Z|[T1 8(Po,~ consy
v ocf dss(H°—const[ | 8(P,,) 8(R,,—consi

X1 8(o,)8(a,)dlde, (22) xV-ldrd¢zd pdv

_ 2 2 2 2
where we used the fact that the constraints conserve the *€XP[~Bo(H+ 713NKToL*/2+ 753Nk T, 7°/2
NoseHoover conserved quantity®.
) +AMW]IT 8(P,,) 8(R,,—constV~idldd 7d V.
IV. ISOTHERMAL-ISOBARIC NOSE -HOOVER v
DYNAMICS (26)

The analysis of the distribution function in terms of the The apparently od&/ ! term is indeed needed due to the
phase-space metric is useful for studying complex equationsonservation of the center-of-mass position. In fact, for the
of motions, such as the ones for the isothermal-isobaricase of a perfect gas in the NpT ensemble and with con-
(NpT) case, where the algebraic treatment becomes involvederved center-of-mass position, the partition function is pro-

The NpT dynamics has first been introduced by Andersemortional to
[10] and Nose[3] and later written in the compact Nese
Hoover form[5]. By first considering the case of an uncon- N
strained system, we write the equations of motions of a sys- j dVexp(—,BvoV)f d r]:[ (R, —cons}
tem subjected to an external pressltgas

ri=pi/mi+7(ri—R,), xf AV expt — foAoVIVI . @
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Therefore, our distribution function correctly contains both _ 2 p2 3(N—1)kT,
theV~! and the conservation of the center-of-mass position. (= ( - 0),
The same argument applies for the nonideal case and for 7 (3N=G)kT, 2M, 2
translational invariance of the potential, by writing the con- )
figurational integral in terms of scaled positions. s=(3N—-3-G)s¢,

The equations of motiori23) differ from the previous
NpT oneq 5] by the coupling of the thermostat and piston to . Vv 2Ky + Wy — |D§/|\/|0
the relative rather than the absolute momenta. We rewrite n=— ( 3V - o),
here the latter for reference, 7eNkT,

r|=p|/m|+77(r|—Ro), V:3V77! (29)

where R, ,P,,M, are the molecular center-of-mass posi-

Pi=Fi=(+mpi, tions, momenta, and masses, respectivily.,W,, are the
molecular kinetic and virial contributions to pressure defined
ZZ (K —3NKT./2) in [5]. The associated conserved quantities are
2 ol
3NKT,
T 0 28 H+ 72(3N—G)kTo22/2+ kT, In s+ 733Nk T, 7%/2+ AV
s=3Ns¢, =const,
: \% (ZKM + Wy ) P,=const=0,
== —Ao, (30)
e NKTo 3V R,=const,
V=3V7. and again the piston does not act against the intramolecular

_ _ constraints §=3Vor=3Vop/m=0). By repeating the
The effect of the couplind28) is not dangerous for large g5me algebraic argument as for the NVT case, it is found that
systems. In fact, the metric corresponding to E@8) is  he Lagrange multipliers are still expressed by E§), due
Vg=1, whereas the conserved quar/mtles are the same ey the translational invariance of the constraints so that the
tended enthalpy and the quantifif*'vV*P, . The latter con- piston dependent terms sum to zero in the corrispondent of

served quantity, which was not considered in previous treatgq. (19) for the molecular NPT case. Therefore, the con-
ments, introduces again ¥ ! term in the distribution strained isobaric-isothermal probability is

function. On the other hand, differently from Ed&3), the
center-of-mass position is not conserved any more and therg¢N(r p 7, 5,V)Jgdl'd¢d ndV
fore the resulting distribution function is incorrect.
As for the NVT case, the difference between the original ~ *€X{ — Bo[H + 75(3N— G)kTo(?/2
and corrected equations of motion in this NpT case can be

calculated once we s&,=0 at initial ime, thus ensuring its + 723Nk T, 742+ AV 8(P,,) 8(R,,— const
conservation at all times for the uncorrected equations of v

motion, sinceP,= — ({+ 7)P,. Again the stationarity of the )

distribution imposeg¢)=(#)=0 and for the original equa- xIT 8(a.) 80V Y|2Z|[dTdZdndV, (3D
tions (K)=3NKkT,/2, whereas for the corrected for(K) “

=3(N—1)kT,/2. Therefore, the effect of coupling the ther- hich is the expected NpT distribution function for a con-

mostat and piston variables to the relative rather than thgyained system where the center of-mass position and mo-
absolute momenta is negligible for large systems, since thg,entum are conserved.

original NpT equations sample the isobaric-isothermal en-
semble with a temperature shifted by a fadtid({N— 1) with
respect to the preset vallg .

When considering the case of a constrained system in the The statistical distribution of constrained systems has
NpT ensemble, we can couple the piston to the system in twbeen derived by considering the constrained dynamics as a
different ways. Here we consider the simplest approach thaton-Hamiltonian dynamical system. By using the general-
consists in taking a set of molecules and couple the piston tzed form of the Liouville equation and the phase-space com-
the center-of-mass position of each molecule. In this case theressibility, we have bypassed the Lagrangian treatment and

V. CONCLUDING REMARKS

equations of motion are written as computed directly the measure and, in turn, the probability
) density as a product af functions for each conserved quan-
ri=p,i/m,;+nR,—R,), tity.

The method has proven to be advantageous when analyz-
. - ing complex dynamical systems, such as the ones described
pyi:FyiJrza: AaVaioa={(Py—MiPo/Mo) for the isothermal-isobaric Nodgoover dynamics coupled
to constraints. For these cases, by detecting the conservation
— M, (P,/M,—P,/M,), laws hidden in the NVT and NpT dynamics and by comput-
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ing the associated metric, we have corrected the previou®n the other hand, experience has shown that a thermalized
equations of motion for systems with total forces summing tosystem composed of many degrees of freedom exhibits a
zero in order to obtain the proper statistical distribution. Thetruly canonical distribution, therefore suggesting that the
change consists in coupling the NH thermostat and piston tpossible bias induced by other hidden conserved quantities is
the relative rather than the absolute momenta and we haweot important for large enough systems.

shown that the effect of the modification on numerical tra-

jectories manifests itself only for small systems. ACKNOWLEDGMENTS
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